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Abstract-Some recent work indicates that the thermal contact conductance can vary significantly with 
time. In previous studies of transient cases, the analyses were restricted to cases utilizing either a thin 
specimen or thermocouples located at the interface. Because the contact conductance is a volume effect, 
these restrictions are frequently too severe. For this reason a method is presented for analyzing temperature 
data obtained from thermally thick specimens with the thermocouples not necessarily located at the 
interface. 

There are a number of possible transient experiments that might be employed, but they are not all equally 
as effective for determining the conductance. A criterion is given to permit comparisons between experi- 
ments; a number of possible experiments are compared utilizing this criterion. From this comparison 
some optimum experiments are indicated. These optimum experiments permit the contact conductance 
to be determined more accurately than utilizing other similar experiments with the same accuracy of the 

temperature measurements. 

h, 

hi, 

NOMENCLATURE 

dimensionless parameter, = 4B7 ; 
dimensionless parameter, = h,L/k; 

dimensionless parameter, = hx/k ; 
specific heat at constant pressure 

[Btu/lbm-F] ; 
sum of squares function [see equation 

(411; 
thermal contact conductance 

[Btu/hft’-F] ; 
thermal contact conductance at time 

ti[Btu/hft2 F] ; 
time index corresponding to ti; 
space index corresponding to xj; 
thermal conductivity [Btu/hft F] ; 
specimen thickness [ft] ; 
thickness of left specimen [ft] ; 
thickness of right specimen [ft] ; 
time [h] ; 
duration of the time interval for evalu- 
ating 2 [h] ; 

temperature [“F] ; 
dimensionless temperature [see equa- 
tion (12a)] ; 
maximum temperature in the experi- 
ment ; 
minimum temperature in the experi- 
ment ; 
coordinate [ft]. 

Greek symbols 
thermal diffusivity = k/pc,[ft2/h] ; 
optimum criterion given by equation 

(10); 
small number such as 0.01; 
error in h [see equation (9)] ; 
maximum value of Ti for a given ex- 
periment ; 
density [lbm/ft3] ; 
dimensionless time, = at/L? ; 
dimensionless time for maximum 2; 
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z x3 dimensionless time for a semi-infinite 
body, = &lx=; 

z x, ,,,, dimensionless time for maximum Z for 
semi-infinite body. 

1. INTRODUCTION 

THERE are ever increasing demands upon heat 
transfer engineers for more precise temperature 
calculations to enable devices of lower cost and 
weight to be built. This, in turn, requires that the 
thermal contact conductance between materials 
be understood more thoroughly and that values 
for the conductance be measured more accura- 
tely. Many researchers have investigated the 
conductance using steady-state techniques [l, 
21. Little work, however, has been done under 
transient conditions which is the subject of this 
paper. Examples for which the knowledge of 
the variation of the conductance with time 
might be important include the thermal design 
of re-entry vehicle heat shields, rocket nozzles, 
nuclear reactors, electronic equipment, gun 
barrels and brake drums. 

A paper by Jacobs and Starr [3] reports at 
cryogenic temperatures for gold and copper 
that “a progressive decrease of conductance 
with time after cooling was observed.” A more 
recent paper by Schauer and Giedt [4] also 
reports the contact conductance can vary 
significantly with time. In both cases the 
specimens were quite thin. Because contact 
conductance is not simply a surface effect but is 
a volume effect, their results have not been 
generally accepted in part because of the use of 
thin specimens. Analyses that we have per- 
formed using temperature data for “thick” 
specimens also indicate that there are transient 
effects. 

The methods of analysis given in [3, 43 for 
determining the contact conductance are re- 
stricted to cases for which: (a) thin specimens 
are utilized or thermocouples are located at the 
interface, and (b) the materials have tempera- 
ture-independent thermal properties. The first 
objective of this paper is to present an analytical 
method suitable for determining the contact 

conductance as a function of time from transient 
temperature measurements located inside either 
a thermally thick or thin body whose thermal 
properties can be temperature-dependent. The 
second objective is an analytical investigation 
of various optimum experiments useful for 
measuring the conductance. 

In [S] these objectives are also covered. The 
first objective is treated more thoroughly herein, 
however. The results derived in [5] related to 
the second objective are utilized in the present 
work. In the investigation of optimum experi- 
ments the emphasis is upon cases for which the 
contact conductance is time invariant; it is 
shown, however, that this case is helpful for 
providing insight into the transient conductance 
case. There is one basic steady state experiment 
for determining the conductance; for the tran- 
sient case the number of cases that can be 
suggested is large because one can independently 
vary the boundary conditions at either ex- 
tremity and the initial conditions. Not all of 
these cases would be equally as efficacious for 
determining the conductance and hence, the 
need of finding optimum experiments. The 
inconclusive results [6, 71 regarding transient 
effects also suggest to us that optimum experi- 
ments may be necessary to investigate the 
transient conductance. 

The basic procedure used herein for deter- 
mining the conductance has been used to find 
thermal conductivity, specific heat and thermal 
diffusivity [8-l l] ; these are parameters appear- 
ing in a partial differential equation. Basically 
the same procedure is applied in this paper for 
the calculation of the contact conductance even 
though the latter is found in the interface 
condition. Parameters appearing in boundary 
or interface conditions-and not in the differen- 
tial equation--can be functions of time while 
properties such as thermal conductivity are not. 
As a quantity appearing in a boundary condi- 
tion, some of the methods given herein can be 
also used for calculating heat and mass transfer 
coefficients from transient data. The basic 
method which can be utilized for determining 
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both properties and parameters appearing in 
boundary conditions is called nonlinear estima- 
tion [12-141. Similar methods have been em- 
ployed in such diverse fields as astronomy, 
water pollution, physics and chemical engi- 
neering. 

Nonlinear estimation can be utilized for 
transient as well as steady-state situations. It 
has a number of advantages over the con- 
ventional method of steady-state analysis. It 
does not require as many thermocouples; it does 
not utilize extrapolation to determine the inter- 
face temperatures; and there is no inconsistency 
between the heat flux implied leaving one 
specimen with flux entering the other. More- 
over, the method extends simply to treatment of 
time-varying conductance and can be utilized 
to investigate optimum experiments for deter- 
mining the conductance. 

2. HEAT TRANSFER PROBLEM 

A typical geometry for a plane, one-dimen- 
sional case of two bodies which have a contact 
conductance, h, at the interface is shown in 
Fig. 1. The heat-conduction equations for bodies 
1 and 2 are respectively 

-L, < x < 0 (1) 

O<x<L, (2) 

where Tl and T, are temperatures for materials 
1 and 2. The properties are assumed known. The 
interface conditions are 

I---, J 
I 5 

FIG. 1. Illustration of typical experiment. 

_k Wb7 t) 
1 ax 

= h[UO, t) - T,(O, t,] 
x=0 

_k wx, 0 = 
2 3.. (3) 

“X Ix=0 

where T,(O, t) is the temperature in body 1 at the 
interface, etc. 

The boundary conditions at x = -L, and at 
x = L, can be given temperatures, given heat 
fluxes or some other known conditions. Thermo- 
couples can be located at positions 1,2,3,4 and 
others (see Fig. 1). 

In placing thermocouples 2 and 3 “near” the 
interface (Fig. 1) and using equations (1) and (2), 
one is assuming that the heat flow near these 
thermocouples is one-dimensional. If there is 
large-scale waviness of the mating surfaces or a 
lack of flatness at certain regions, etc., the heat 
flow might well be three-dimensional a sub- 
stantial distance from the interface. It is assumed, 
however, that the thermocouples are placed 
outside this “disturbance layer”. 

3. NONLINEAR ESTIMATION PROCEDURE 

The calculated temperatures at (Xj, ti) are 
designated Tj are found (usually) from a finite 
difference solution of (l-3) with appropriate 
boundary conditions. By varying h, Tj is made 
to agree in a least squares sense with the 
measured temperatures Y$ That is, the sum of 
squares function F for n thermocouples and 
measurements at m discrete times, 

F(h) = f i [T;(h) - Yj]‘, (4) i=l j=l 

is minimized with respect to h. 
The sum of squares function F can be eftici- 

ently minimized in many ways [16,17]. A simple 
procedure approximates at each iteration step 
the calculated temperature by the Taylor series 

T;(h) z Tj(hJ + Ti,j Ah,, (5) 
where 

Ah, = hl+l - h, (64 
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Ti _ aTf: 
h.J ah x 

hr 

T:W ‘,‘h’ - T;@,). (6b) 

I 

The derivative Th = i?T/ah is called a sensitivity 
coefficient. (Other definitions could be used.) 
The T’s on the right-hand side of equation (6b) 
are calculated with a finite-difference program. 
The iterative procedure begins with an esti- 
mated value for h,, corresponding to 1 = 0. 

Using aF/ah = 0 at the minimum value of F 

gives for dhl, after using equation (5), 

. . . 
1 C TL, j [Yj - Tf(hJI 

ah, = i=l i=lm n 

(7) izt jJlt (Tt,j)2 

Thie procedure can be modified readily to 
treat time-variable h. Instead of calculating a 
single h for the entire experiment, the duration 
of the experiment is divided into a number of 
time regions, for each of which a constant h is 
calculated. In equation (7) the summation of j, 
which is for the thermocouples, ranges over all 
the n thermocouples. The time index, i, can 
extend only to m = 2 or 3, if many h’s are to be 
found in an effort to approximate time-varying 
h. Note that the finite-difference calculations for 
the temperature, Tj, might use much finer time- 
steps than the time intervals between successive 
times at which experimental temperatures are 
used. These finer dt’s would be used to insure 
accurately calculated temperatures [9]. 

Many other numerical approximations are 
possible in addition to the one mentioned in 
connection with (7). One could approximate h 
by a polynomial of first, second or other degrees. 
In so doing, several variations on each degree 
would be possible. One simple linear approxi- 
mation which would use (7) is the following. 
For the first time region h could be considered 
constant. For subsequent time regions would be 
considered linear in time as 

h=#+ t-tz (hz+’ 

tz+ 1 - tz 
- hz) (8) 

where h, is known and h,, 1 is to be found using 

nonlinear estimation. The time t would be 
evaluated for the I + I time interval, 

tz+1 - Mth+1 < t < rz+, + &Wz+ 1. 

The duration of the Ith time region for finding 
hz is designated (At),. For the linear approxi- 
mation described above, the time regions (At), 
can be larger than those for h assumed constant ; 
this is because a time-variable h can be better 
approximated by linear segments than constant 
ones. 

4. ERROR ANALYSIS 

An analysis of the effect of small errors in T, 

helps to provide some insight into the efficacy 
of this method. The analysis follows rather 
closely some of the development given above. 
The result is an error in h, designated Ah,, given 

by 

CX hT’ ATi. 

+ = xZ(h;;,j)2J (9) 

where AT is an error in the measured tempera- 
ture. Th is evalu$ed,for the value of h minimizing 
F, designated h. (h IS not identical to the true or 
correct value of h due to small errors in Y and 
the calculational procedure). 

The errors in temperature tend to be biased 
rather than random. If they were random, then 
one could use standard statistical procedures to 
find the confidence region [ 181. 

5. CRITERIA FOR OPTIMUM EXPERIMENTS 

Rather than repeating an analysis to deter- 
mine a criterion for optimizing experiments, 
which is given in [lo] and [13], some of the 
basic conditions are stated and a correlation 
between the criterion and some errors in h is 
demonstrated. 

The conditions are : 

1. The errors in the temperature measure- 
ments are small. 

2. The (a) number of thermocouples, (b) 
maximum temperature difference between 
the highest T of the high-T specimen and 
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the lowest T of the low-T specimen and (c) 
number of equally-spaced temperature 
measurements of the experiment are each 
fixed in the possible experiments considered 
below. 

3. The difference between the minimum value 
of the sum of squares function F and 
another slightly larger F is futed. 

These conditions could be utilized to deter- 
mine a classical confidence region for a given 
experiment if the errors in T were random. 
Because the temperature errors in our research 
have tended to be biased rather than random, it 
may not be correct to specify a classical con- 
fidence region. However, one can still derive a 
criterion which would indicate the relative 
efficacy of different possible experiments [lo, 
133. The criterion for an optimum experiment- 
one which produces minimum errors in h for a 
given error distribution in T-is to maximize 

i= 1 j=l 

where T,,, and Tmin are respectively the maxi- 
mum and minimum temperatures in the speci- 
mens. Note that (10a) is a normalized form of 
the denominator of’ (9). If the measurements are 
equally spaced in time, if m is large and if n = 1 
(one thermocouple), then acan be approximated 

by 

“=t iaX ‘1 [Tm:7,(e;miJ2 de (lob) 

where t,,, is the duration of the time interval 
for evaluating 2. The examples to be considered 
have two identical specimens and similar bound- 
ary conditions at x = -L, and x = L,. Be- 
cause of this symmetry about the interface (see 
equation (16) of [S]), the sensitivity coefficients 
in both specimens have the same absolute values 
at the same distance from the interface and at 
the same time. Hence it is convenient to write 
;? for a single thermocouple which could be 

considered for the following examples to be in 
either the high or low temperature specimen. 
Exactly the same value of 2 would also be 
obtained using two thermocouples both the 
same distance from the interface with one on 
either side of the interface. 

In [S] the sensitivity coefficient Th is investi- 
gated and insight is provided into the types of 
experiments which would maximize 2. One 
condition for transient experiments that maxi- 
mize 2 is to initially have unequal but uniform 
temperatures in the two specimens. Hence this 
particular condition is considered below for 
several boundary conditions. 

This criterion specifically applies to deter- 
mining a single conductance for the entire 
experiment. This criterion can be helpful, how- 
ever, for determining optimum experiments for 
finding h(t). Suppose hi is the conductance 
between times ti and ti+ 1, then it can be proved 
that (see Appendix) .I 

h aT(x, t) -= 
O ah, c ‘- hiaT(x, t) 

ah’ (11) 

i= 1 

for the special case of hi = ho(i = 1, 2, . . . , M) 
where ho is a constant h for the entire experiment. 
Now the accuracy of the determination of any 
hi is affected by the magnitude of its sensitivity 
coefficient. Each sensitivity coefficient in (11) 
has the same sign (minus in the high temperature 
specimen and plus in the other specimen). If an 
experiment has been chosen to maximize 
1 aT/ah, 1, then the sensitivity coefficients would 
be expected to be larger on the average than for 
another similar experiment for which 1 dT/ah, 1 
had not been maximized. Hence an investiga- 
tion of the optimum experiments for determina- 
ting a constant conductance would simultane- 
ously yield information about optimum experi- 
ments for h(t). Because of this conclusion and 
for brevity, only the constant-h case is examined 
below. 

6. POSSIBLE OPTIMUM EXPERIMENTS 

6.1. Negligible internal resistance case (case I) 
Perhaps the simplest transient case to in- 
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vestigate is for two identical specimens of 
thickness L initially at temperatures T,,, and 
T,i”, B = hL/k < 1. The temperature in the low 
temperature specimen is given by 

TC T - Lin 
T - Ln 

= +((1 - ewzBr) 
max 

where 
at k 

z=-- 

E 
and a=-. 

pc, 

For convenience let 

Bz = ;. 

Then differentiating (12a) with respect to B gives 

- n 
TBE Bz= Bze- 2Br _ A 

-4e -A’2 (13) 

and thus 

= & [2 - (A2 + 2A + 2) e-“I. (14) 

(The definition of 2 used in equation (14) is the 
same as used in equation (10) which is used in 
all the following cases). These results are plotted 
in Fig. 2. 

FIG. 2 Curves of T, T, and ;i for Case I. (Finite plate with 
E = hL/k z 0 and constant h). 

The dimensionless temperature starts at zero 
and reaches its maximum approximately at 
Bz = 3 while the maximum of TB occurs at 
exactly Bz = 0.5. Hence, if only one instanta- 
neous temperature reading is to be taken, it 
should be at this latter time. Incidentally, if one 
desired to perform such an experiment and 
desired to find a preliminary value of h, it 
could be readily done by setting 

AT=-= . ht 05 
PC& 

(15) 

when T = 0.316. 
If a large number of temperature measure- 

ments at uniform time intervals were to be made, 
then one would maximize 2 in order to minimize 
the effect of temperature errors upon the cal- 
culation of h. This would apply for this case 
when using one or more thermocouples. The 
maximum occurs at B z x 0,846. Before analy- 
zing the data for an experiment one does not 
know h and hence cannot compute precisely 
the optimum duration for using the temperature 
data. However, the 2 maximum is not sharp; 
if the maximum time is chosen to be between 
the times associated with say, T = 0.35 and 
0.45, little loss of accuracy will result. 

6.2 Semi-infinite case (Cases II and III) 
The other extreme value of B compared to 

the previous case is B = hL/k equal to infinity 
which occurs when L + co. The temperature 
distribution in the low-temperature specimen is 

T _ T - Tmin 1 
T,,, - T,,i, = 5 

- [exp(2B, + 4B$,)] erfc($ + 2&r:)} 

where 

B, = ; (17) 
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and which for the interface (x = 0) reduces to 

T max 

= i{FT [exp (4B$,)] erfc (2&z:)}. 

Note that 

(18) 

given in equation (18) is independent of x. 
For any interior point, however, T is a function 
of both B, and rr -- 

Depicted in Fig. 3 are T, TB, and 2 for x = 0 
(Case II). The optimum duration of an experi- 
ment as indicated by 2 is 

h2at, 
B;z,,, = - 

k2 
x 040. (20) 

FIG. 5. Curves of a,, and Bfr,, m for semi-infinite body 

FIG. 3. Curves of T, T, and 2 for interface for semi-infinite 
body (Case II). 

Typical curves are depicted in Fig. 4 for 
the interior location indicated by B, = 1.0 
(Case III). Note that the maximum value of Z 
for x = 0 shown in Fig. 3 is about 0.0172 while 
for B, = 19 from Fig. 4, &,,, is the smaller 
value of 0903. Figure 5 shows how ii,,,,, varies 
with B,. The times z,,, = at,,,/x2 associated 
with these &_‘s are also given. 

temperature measurement errors upon the 
accuracy of h is given. For simplicity in analysis 
one thermocouple is used. The first error 
distribution (designated “a” in Fig. 6) is for a 
constant error in temperature equal to 

AT’ = ~( T,, - T,,)/2 (21) 

where e is a small number such as 0.01. The 
other curve in Fig. 10 (Curve b) is for an error 
which is a given fraction of the temperature rise or To further demonstrate the etlicacy of the - 

A max criterion, the effect of two distributions of 

i 
OR 

TB, 

FIG. 4 

0.3 - 

SAME t AS SHOWN 

IN INSET OF FIG. 3. 

C-2 - THERMOCOUPLE AT x=j 

0.004 

d 
0.002 

0 
0 I 2 3 4 5 6 7 8 9 IO 

‘r 

Curves of T, TB= and 2 for B = 1.0 for semi-infinite 
body (Case III). 

AT’ = ~T(T,,, - Tmin). (22) 
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As anticipated, the per cent errors in h increase 
with increasing B, which is associated with 
decreasing 2. The minimum error shown is for 
Curve a with B, = 0; if e = 0.01, then the error 
in h would be about 2 per cent. Since some other 
errors indicated by Fig. 6 are much larger, it 
behoves one to be careful in the design of the 
experiments. 

6.3 Finite cases (Cases IV, V and VI) 
Three finite cases with the specimens of equal 

length and the same thermal properties are 
described in Table 1. Case IV, which has a 
uniform initial temperature distribution, is the 
easiest experiment to perform ; unfortunately 
in most cases it is not as effective for the accurate 
determination of h as the other two. Case V and 
VI have initial temperature distributions which 
are uniform in each specimen at-T,,, and Tmin 

Depicted in Fig. 7 are the A versus time 

15 
r 

Afb 
-x 

b - CONSTANT FRACTIONAL 

ERROR IN 7 
0 I , I I 

0 0.5 I.0 15 2.0 

Bz 

FIG. 6. Errors in h for single thermocouple in semi-infinite 
body. 

0020 
t 

CASE V 

0.0 I 5 - 

Z 

0010 - 

0005 
\ 
\ 
\ 
\ 
\ 

0 I .I( 

0 I 2 3 4 5 “m 

r=Jp 

FIG. 7. 2 vs. T for x = 0 for finite body Cases IV, V and VI 
with B = 0.5. 

curves for these three cases for the special con- 
ditions of B(= hL/k) = 0.5 and a thermocouple 
at x = 0- or 0+ (the interface). Evidently, for 
Case IV with B = 0.5 and x = 0, the steady- 
state experiment (r 4 00) is superior to a 
transient experiment of short duration (assuming 
h is invariant with time). For other values of B 
this is not true as discussed below. 

For Cases IV the maximum values of 2 vs. x 
(position of a thermocouple) are shown in Fig. 8 
for B = 0.5,l.O and 2.0. These&,,-values, which 
are identical to those obtained in steady state, 
are given by 

Tim,,, = 1 - 2 
[ 1 

2 B2 

L (2B + 1)4’ (23) 

This expression is maximized when B = 0.5 for 
any given x/L. It can be proved that these 

&XXX -values also apply if T( - L, t) were a 
function of time such that Tmin < T(- L, t) < 

Table 1. Initial and boundary conditions for cases IV, V and VI 

Case 
Initial temperature 

distribution 
Boundary conditions 

No. 
-L<x<O O<x<L x= -L x=L 

IV T = Tmi, T = Tmin T = Tm,, T = Tmi, 
V T = Lx T = Tmin T = T,,, T = Tmi, 
VI T = Km T = Tmi, aTlax = 0 aTlax = 0 
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O-25 AND t0 

0125 AND 2.0 

0 52 c-4 O-6 w3 VO 

X/L 

FIG. 8. ;i,,,,, for finite body, Case IV. 

T max and that it finally reached a constant 
value equal to T,,. 

In Fig. 9 some results for Case V are shown for 

zi,W For a short dimensionless time the 
temperature response at the interface is identical 
to that for the two semi-infinite bodies discussed 
above; hence, for B > 1 the maximum 2s 
at the fnterface are equal to the zf,,, of Fig. 3. 
For B d 0.5 the &,, values are given by 
equation (23). Because one cannot place a 
thermocouple at x = 0 without disturbing the 
temperature at the most critical location but 
rather some distance from x = 0, the B = 05 
value is again probably an excellent choice. 
For cases IV and V it is clear that one should 
place the thermocouples as near the interface 
as possible without disturbing the interface 
conditions. 

X/L 

FIG. 9. a,,,,, for finite body, Case V 

The most interesting of the three cases is 
Case VI (see Fig. 10). As B approaches zero, 
the temperature dist~bution (except in the 
immediate vicinity of the interface) becomes 
uniform in x at any given time; then, &,, 
becomes constant with x as B -+ 0 which is the 
case discussed in Section 6.1. For the cases of 
I? < 0.5 the optimum experimental time is 
about Bz = 0% as indicated by Figs. 2 and 7. 
Values of B 2 1 give values of &,, at x = 0 
which are identical to those for a semi-infinite 
body and are also shown by Fig. 9 for Case V. 

For these three finite cases the optimum 
value of B for bodies with T = 0 at x = L 
is about 05 as indicated by Figs. 8 and 9 while 
the optimum B for Case VI goes to zero. For 
this latter case it is not nearly as important to 
position the thermocouple near the interface 
as for the other two cases. 

0.025 

8 =D 

0.25 

0 I I 

0 0.2 0.4 C-6 0.6 

X/L 

FIG. 10. &a% for fiiite body, Case VI. 

7. RESULTS 

Since a number of cases are considered above, 
a summary of the results is given in Table 2. 
For each case the specimens on either side of 
the interface are identical and have the same 
type boundary conditions at corresponding sur- 
faces. The 2’s are given for only a single thermo- 
couple. For Case III the thermocouple is 
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Table 2. Various optimum experiments with identical specimen on either side of 
interface 

Case 
ilO. 4*x 

Optimum 
time 

I 

II 

III 

IV 

V 

VI 

Via 

VIb 

Finite bodies with q = 0 at 
x = + L and B -P 0, i.e. k + co or 
L-0 

Semi-infinite bodies for thermo- 
couple at x = Of (or 0-) 

Set-inmate bodies for interior 
thermocouple with B, = 1 

Finite body (see Table 1) 
Thermocouple x = 0+ (or 0-) 
and B = 05 

Finite body (see Table 1) 
Thermocouple at x = Of (or 0-) 
B > 1.0 

Finite body (see Table 1) 
The~ocouple at n = 0 + (or 0- ) 

B -+ 0, i.e. k -+ co or L -+ 0 
(same as Case I) 

B = 0.5 

0.02427 Bz, = 0.846 

0.0172 B&,, = 0.40 

0.003 %* In = 1-7 

0.0156 z, + n3 

0.0172 B%,,, 2 040 

0.02427 BT, = 0.846 

0.0183 *, = 1.25 

located inside the body while for Cases II, 
IV, V and VIb the the~o~uple is at x = O- 
or O+. 

As discussed above the optimum experiment 
is one in which 2 is maximized. On this basis the 
optimum experiment is for two finite specimens 
with B tending to zero (Cases I or Via). Figure 11 
depicts the fractional errors in h due to the two 
error distributions discussed in Section 6.2 
and used for the semi-ignite example (Fig. 6). 
Curve a in Fig. 11 (which is for a constant error 
in the temperature) has a minimum which 
coincides approximately with the dimensionless 
time at which 2 is maximized. To some extent 
this is a coincidence because the minimum error 
could occur at smaller or greater values of B 
depending upon the distribution with time of 
the errors in the measured tem~ratures. How- 
ever, the error distribution associated with 
Curve a is an important one because it is one 
of the most severe types of biased errors. 

Also shown in Fig. 11 is Curve b which is for 
an error distribution which is proportional 

to the temperature rise. The minimum error 
occurs at Bz = 0 which corresponds to a tem- 
perature rise (Fig. 2) of zero ; this result is thus 
not too helpful because the errors are unlikely 

01 L 

0 IO Br 2.0 

FIG. 11. Errors in h for single thermocouple in finite body, 
Case Vi with B x 0. 
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to be proportional to the temperature rise as 
the temperature rise approaches zero. 

Notice that the h-errors in Fig. 11 are less than 
those in Fig. 6 for B, = 0. This is consistent with 
the 2 criterion because the a,,, values are 
respectively O-024 and 0.017. For B, > 0 in 
Fig. 6 the h-errors increase consistently with the 
criterion. These results of mathematical experi- 
mentation with T-errors give further validity 
to the &,, criterion for an optimum experiment. 

8. SUMMARY AND CONCLUSIONS 

A method utilizing nonlinear estimation 1 s 
given to calculate the contact conductance h 
as a constant or as a function of time. 

A general error analysis is given to permit the 
investigation of biased errors upon the calcu- 
lated h ; this error analysis is employed for 
several examples. 

To aid in the determination of optimum 
experiments for finding a time-invariant h, 
the criterion 2 is given and values for it have been 
determined for a number of cases. 

A number of possible experiments are ex- 
amined. If the two specimens are identical and 
a constant h is to be found, the optimum 
experiment is one in which the specimens are 
initially at different temperatures and then 
suddenly brought into thermal contact. The 
specimens are insulated at all surfaces except 
the interface. The dimensionless number 
B = hL/k should be as small as conditions 
permit. If B Q 0.5, the locations of the thermo- 
couples are not critical; if B > 0.5, then some 
thermocouples are located as near the interface 
as possible but yet still outside the disturbance 
layer. 
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APPENDIX 

Derivation of Sensitivity Relation Equation (11) 
Consider the geometry shown by Fig. 1; 

1. M. L. MINGES, Thermal Contact Resistance, Vol. l-A, the mathematical description of the problem 
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is given in part by equations (l-3). The initial 
temperature distribution is 

T(x,O) = T(x) (A-l) 

and the boundary conditions at x = -L and 
L are 

-k 3 
1 ax x=-L 

= A,(t) T( - L, t) + B,(t) (A-2) 

-k ?!i 
2 ax x=L 

= A,(t) w‘, t) + B,(t) (A-3) 

where A,, A,, B, and B2 are known functions of 
time ; any or all of these coefficients can be 
zero. The thermal properties are to be considered 
constants. 

For conciseness only body 1 will be considered 
below although similar relations can be given 
for body 2. 

Consider first the case of time-independent 
h = he and let 

cjlo e h,z; &20 = ho:. (A-4) 
0 0 

Take the partial derivative of equations (1) 
(3) (A-l) and (A-2) with respect to ho and 
multiply by ho to obtain 

k a2+1o - aho 
1 ax2 Pl% 1 at (A-5) 

= ho[4,,@> ~1 - 42oKh 01 

+ h,[WA 0 - T2K4 01 (A-6) 

410(X? 0) = 0 (A-7) 

-k$L’ = A,@) 410(-L, t). (‘4-8) 
x=-L 

Now replace h(t) = ho by a series of functions 
h’,i=1,2 ,..., Mwhere 

h(t) = hi = ho for ti < t < ti+l. (A-9) 

Define 

(A-10) 

and take the partial derivative of equations (1) 
(3) (A-l) and (A-3) with respect to hi and then 
multiply by hi = ho to obtain 

k a”& _ add 
1 ax2 PlC,. 1 at (A-l 1) 

_k g 

1 ax x=o 
= ho[d4(0, t) - $i?(O, Ql 

+ h,W CW4 t) - T,(‘A 01 (A-12) 

&x,0) = 0 (A-13) 

_k g 

1 ax x=-L 
= A(t) cg( - L, t) (A-14) 

where s(t) = 1 if ti < t < ti+l (A-15) 

= 0 otherwise. 

If now equation (A-11) is written for i = 1, 
2, . . , M and the equations are added together, 
there results 

(A-16) 

where 

G = c” &. (A-17) 
i= 1 

Repeat the summation procedure for equa- 
tions (A-12HA-14). Comparing these equations 
with (A-5HA-8) shows that 

&0(x, t) = G = i$I 4;. (A-18) 

A similar result can be demonstrated for body 2. 
These latter two results yield equation (11). 
Note that equation (11) is valid for a variety of 
initial and boundary conditions; the basic 
restrictions are that the thermal properties are 
temperature-independent (i.e. the problem must 
be linear). 
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RhsumcLCertains travaux r&cents indiquent que la conductance du contact thermique peut varier d’une 
facon importante avec le temps Dans les etudes anttrieures des cas transitoires, les analyses &Gent 
restremtes aux cas utilisant une specimen mince ou des thermocouples places a l’interface. Comme la 
conductance du contact est un effet de volume, ces restrictions sont f&quemment trop &v&s. Pour cette 
raison, on prbsente une mtthode pour l’analyse des rtsultats de temperature obtenus ii partir des specimens 
thermiquement @is avec les thermocouples places B l’interface. 

I1 y a un certain nombre d’exp&iences transitoires possibles qui pourraient &tre employees, mais elles 
ne sont pas toutes dgalement aussi ethicaces pour determiner la conductance On donne un critere pour 
permettre les comparaisons entre les experiences; un certain nombre d’experiences possibles est compare 
en employant ce critere. A partir de cette comparaison quelques experiences optimales sont indiqu&es. 
Ces exp6riences optimales permettent de determiner la conductance de contact plus pr&isbment qu’en 

employant d’autres experiences semblables avec la mi?me precision des mesures de temperature. 

Zusnmmenfassung-Kiirzlich erschienene Arbeiten deuten an, dass sich der thermische Obergangswider- 
stand stark mit der Zeit Lndern kann In friiheren Untersuchungen von instationSiren Flllen waren die 
Analysen auf diinne Proben beschriinkt oder auf FIlle in welchen die Thermoelemente in der Trennfuge 
angeordnet waren. Da der Ubergangswiderstand ein Volumeneffekt ist, sind diese Einschriinkungen 
h&dig zu stark. Daher wird eine Methode angegeben, zur Analysierung der Temperaturen die an dicken 
Proben mit Thermoelementen die nicht in der Trennfuge lagen, gemessen wurden. 

Es k&men eine Reihe von miiglichen instation&en Versuchen angewandt werden, jedoch sind sie zur 
Bestimmung des Widerstandes nicht gleich wirksam Zum Vergleich der einzehren Versuche wird ein 
Kriterium angegeben und eine Anzahl von Versuchen wird damit beurteilt Es ergeben sich einige optimale 
Versuche. Sie erlauben eine genauere Bestimmung des Ubergangswiderstandes als andere, lhnliche 

Versuche, deren Temperaturmessungen gleich genau durchgeftihrt wurden. 

AmoTaqwsr-I3 HeKOTOpbIX nOCJIeRHMX pa6OTaX yKa3bIBaeTCFI, 9TO KOHTaKTHaR TeIIJIO- 

npOBOAIlMOCTbMOX(eT3HaY11TeJIbHOI13MeHRTbCfICOBpeMeHeM. B npeJ&I~yIIJHXHCCJIe~OBaHIlRX 
HWTaUHOHapHbIX npOIfeCCOB aHaJII43bI 6a.na OrpaHWEHbI CJIyYaHMEI, B KOTOpbIX HCnOJIb30- 

Bancrr HJI~ TOHKMM ofipacen I~JIM repuonapr.r, pacnonor+teurrbre ua rpaunne pasnena. Tau KatF 
KOHTaKTHaR npOBOA&lMOCTb npeRCTaB.IIReT co608 06%eMHbIfi BI#N.jeKT, BTH OrpaHaseHMx 

RBJIRIOTCR CJIMIIIKOM CTpOrHMLI. n0 3TOti npWiMAe npeJ&CTaBJIeH MeTOA&TR aHaJII43a TeMnepa- 

TypHbIX RaHHbIX, nOJIyYeHHbIX Ha TepMWIeCKvl TOJICTbIX o6pa3rrax, KorAa TepMOnapbI He 

06ff3aTenbHo pacnonoranmb Ha rpamfqe paanena. 

MO~KHO npOBeCTLl pRn 3KCnepnMeHTOB n0 HeCTa~llOHapIiOti TenJIOnpOBO~HOCTM, KOTOpbIe 

MOI'JIM 6bI 6bITb HCnOJIb30BaHbI, HO OHLi He BCerUa 6yAyT OfiHHaKOBO 3$$eKTb,BHbIMH npn 
0npeflenennM npono~nuocrn. npeACTaBJIeH KpPITepMt, nO3BOJIRIOQPlti CpaBHHTb 3KCnepW 

MeHTbI;CnOMOIUbIO3TOrO KpHTepMHIIpOBeneHOCpaBHeHPIe HeCKOJIbKLlXBOSMOFKHbIX3KCIlepIP 

MeHTOB; npPiBOA&lTCrl CpaBHeHLle pHna 3KCnepHMeHTOB Ha OCHOBe MCnOJIb30BaHHH 3TOrO 

KpPiTepHH. B pe3ynbTaTe OTO6paIIbI HeKOTOpbIe OnTEMaJIbHbIe 3KCnepHMeHTb1, no3BonHIoIqae 

OnpeneJIIJTb KOHTaKTHyIO npOBORMMOCTb 6onee TIlJaTeJIbHO, YeM C nOMOwbI0 EpyrMx BHaJIO- 

I'INHbIX 3KCnepHMeHTOB, B KOTOpbIX M3MepeHIfR TeMnepaTypbI npOI43BO@lJIMCb C TaKOt H(e 

TOYHOCTbIO. 


