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Abstract—Some recent work indicates that the thermal contact conductance can vary significantly with
time. In previous studies of transient cases, the analyses were restricted to cases utilizing either a thin
specimen or thermocouples located at the interface. Because the contact conductance is a volume effect,
these restrictions are frequently too severe. For this reason a method is presented for analyzing temperature
data obtained from thermally thick specimens with the thermocouples not necessarily located at the
interface.

There are a number of possible transient experiments that might be employed, but they are not all equally
as effective for determining the conductance. A criterion is given to permit comparisons between experi-
ments; a number of possible experiments are compared utilizing this criterion. From this comparison
some optimum experiments are indicated. These optimum experiments permit the contact conductance
to be determined more accurately than utilizing other similar experiments with the same accuracy of the

temperature measurements.

NOMENCLATURE T,  temperature [°F];

dimensionless parameter, = 4Bt ; T, dimensionless temperature [see equa-
dimensionless parameter, = hoL/k; tion (12a)];
dimensionless parameter, = hx/k; Thax» maximum temperature in the experi-
specific heat at constant pressure ment;

[Btu/lbm-F]; T.n» minimum temperature in the experi-
sum of squares function [see equation ment;
@]; X, coordinate [ft].

thermal contact conductance
[Btu/hft-F];

thermal contact conductance at time Greek symbols
t[Btu/hft’ F]; o, thermal diffusivity = k/pc,[ft*/h];

time index corresponding to ¢;; 4, optimum criterion given by equation
space index corresponding to x;; (10);

thermal conductivity [Btu/hftF]; €, small number such as 0-01;

specimen thickness [ft]; 4h,, error in h [see equation (9)];
thickness of left specimen [ft]; A, maximum value of 4 for a given ex-
thickness of right specimen [ft]; periment ;

time [h]; p,  density [lbm/ft?];

duration of the time interval for evalu- T, dimensionless time, = at/I?;

ating 4 [h]; T,.,  dimensionless time for maximum 4;
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1,,  dimensionless time for a semi-infinite
2.

body, = at/x?*; _

dimensionless time for maximum A for

semi-infinite body.

Tx,m

1. INTRODUCTION

THERE are ever increasing demands upon heat
transfer engineers for more precise temperature
calculations to enable devices of lower cost and
weight to be built. This, in turn, requires that the
thermal contact conductance between materials
be understood more thoroughly and that values
for the conductance be measured more accura-
tely. Many researchers have investigated the
conductance using steady-state techniques [1,
2]. Little work, however, has been done under
transient conditions which is the subject of this
paper. Examples for which the knowledge of
the variation of the conductance with time
might be important include the thermal design
of re-entry vehicle heat shields, rocket nozzles,
nuclear reactors, electronic equipment, gun
barrels and brake drums.

A paper by Jacobs and Starr [3] reports at
cryogenic temperatures for gold and copper
that “a progressive decrease of conductance
with time after cooling was observed.” A more
recent paper by Schauer and Giedt [4] also
reports the contact conductance can vary
significantly with time. In both cases the
specimens were quite thin. Because contact
conductance is not simply a surface effect but is
a volume effect, their results have not been
generally accepted in part because of the use of
thin specimens. Analyses that we have per-
formed using temperature data for “thick”
specimens also indicate that there are transient
effects.

The methods of analysis given in [3, 4] for
determining the contact conductance are re-
stricted to cases for which: (a) thin specimens
are utilized or thermocouples are located at the
interface, and (b) the materials have tempera-
ture-independent thermal properties. The first
objective of this paper is to present an analytical
method suitable for determining the contact
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conductance as a function of time from transient
temperature measurements located inside either
a thermally thick or thin body whose thermal
properties can be temperature-dependent. The
second objective is an analytical investigation
of various optimum experiments useful for
measuring the conductance.

In [5] these objectives are also covered. The
first objective is treated more thoroughly herein,
however. The results derived in [5] related to
the second objective are utilized in the present
work. In the investigation of optimum experi-
ments the emphasis is upon cases for which the
contact conductance is time invariant; it is
shown, however, that this case is helpful for
providing insight into the transient conductance
case. There is one basic steady state experiment
for determining the conductance; for the tran-
sient case the number of cases that can be
suggested is large because one can independently
vary the boundary conditions at either ex-
tremity and the initial conditions. Not all of
these cases would be equally as efficacious for
determining the conductance and hence, the
need of finding optimum experiments. The
inconclusive results [6, 7] regarding transient
effects also suggest to us that optimum experi-
ments may be necessary to investigate the
transient conductance.

The basic procedure used herein for deter-
mining the conductance has been used to find
thermal conductivity, specific heat and thermal
diffusivity [8-11]; these are parameters appear-
ing in a partial differential equation. Basically
the same procedure is applied in this paper for
the calculation of the contact conductance even
though the latter is found in the interface
condition. Parameters appearing in boundary
or interface conditions—and not in the differen-
tial equation—can be functions of time while
properties such as thermal conductivity are not.
As a quantity appearing in a boundary condi-
tion, some of the methods given herein can be
also used for calculating heat and mass transfer
coefficients from transient data. The basic
method which can be utilized for determining
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both properties and parameters appearing in
boundary conditions is called nonlinear estima-
tion [12-14]. Similar methods have been em-
ployed in such diverse {ields as astronomy,
water pollution, physics and chemical engi-
neering.

Nonlinear estimation can be utilized for
transient as well as steady-state situations. It
has a number of advantages over the con-
ventional method of steady-state analysis. It
does not require as many thermocouples; it does
not utilize extrapolation to determine the inter-
face temperatures; and there is no inconsistency
between the heat flux implied leaving one
specimen with flux entering the other. More-
over, the method extends simply to treatment of
time-varying conductance and can be utilized
to investigate optimum experiments for deter-
mining the conductance.

2. HEAT TRANSFER PROBLEM

A typical geometry for a plane, one-dimen-
sional case of two bodies which have a contact
conductance, h, at the interface is shown in
Fig. 1. The heat-conduction equations for bodies
1 and 2 are respectively

o (, om\ _ T,
a@ﬁ%“%ﬁ”

0 oT, oT,
Ix (kz _6—x£> = pZCp,Z__‘%; 0<x<lL, 2

-L,<x<0 (1)

ot

where T, and T, are temperatures for materials
1 and 2. The properties are assumed known. The
interface conditions are

INTERFACE
MATERIAL | /MATERIAL 2
FIXED — .| 2. Ls 4, FIXED
PRESSURE X PRESSURE
LI Ll

Fi1G. 1. Illustration of typical experiment.
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0Ty(x, 1)

—ks O0x

= h[T,(0, 1) — T5(0,1)]

0T,(x, 1)
ax x=0

= —k; 3)
where T,(0, t) is the temperature in body 1 at the
interface, etc.

The boundary conditions at x = —L; and at
x = L, can be given temperatures, given heat
fluxes or some other known conditions. Thermo-
couples can be located at positions 1, 2, 3,4 and
others (see Fig. 1).

In placing thermocouples 2 and 3 “near” the
interface (Fig. 1) and using equations (1) and (2),
one is assuming that the heat flow near these
thermocouples is one-dimensional. If there is
large-scale waviness of the mating surfaces or a
lack of flatness at certain regions, etc., the heat
flow might well be three-dimensional a sub-
stantial distance from the interface. It is assumed,
however, that the thermocouples are placed
outside this “disturbance layer”.

3. NONLINEAR ESTIMATION PROCEDURE

The calculated temperatures at (x;, ¢;) are
designated T* are found (usually) from a finite
difference solution of (1-3) with appropriate
boundary conditions. By varying h, T} is made
to agree in a least squares sense with the
measured temperatures Y} That is, the sum of
squares function F for n thermocouples and
measurements at m discrete times,

=3 3 mim- e, @

i=1j=
is minimized with respect to A.

The sum of squares function F can be effici-
ently minimized in many ways [ 16, 17]. A simple
procedure approximates at each iteration step
the calculated temperature by the Taylor series

Ti(h) ~ Tifh) + T}, 4h, 5)
where

ahy = hyy — by (6a)
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_ T

- _ Tl + ¢ — Tih)
h,j — .

B |, o

The derivative T, = éT/0h is called a sensitivity
coefficient. (Other definitions could be used.)
The T’s on the right-hand side of equation (6b)
are calculated with a finite-difference program.
The iterative procedure begins with an esti-
mated value for hy, corresponding to [ = 0.

Using 0F/0h = 0 at the minimum value of F
gives for Ah,, after using equation (5),

(6b)

m n

> 3 TV - Ti]
i=1j=1 ] (7)

$ ¥ (T )

i=1j=1

Ahl =

This procedure can be modified readily to
treat time-variable h. Instead of calculating a
single h for the entire experiment, the duration
of the experiment is divided into a number of
time regions, for each of which a constant h is
calculated. In equation (7) the summation of j,
which is for the thermocouples, ranges over all
the n thermocouples. The time index, i, can
extend only to m = 2 or 3, if many h’s are to be
found in an effort to approximate time-varying
h. Note that the finite-difference calculations for
the temperature, T, might use much finer time-
steps than the time intervals between successive
times at which experimental temperatures are
used. These finer At’s would be used to insure
accurately calculated temperatures [9].

Many other numerical approximations are
possible in addition to the one mentioned in
connection with (7). One could approximate h
by a polynomial of first, second or other degrees.
In so doing, several variations on each degree
would be possible. One simple linear approxi-
mation which would use (7) is the following.
For the first time region h could be considered
constant. For subsequent time regions would be
considered linear in time as

h=H+ _t_,i

I+1 I

H—H) @)

where h; is known and h; . ; is to be found using
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nonlinear estimation. The time t would be
evaluated for the I + 1 time interval,

o1 — A4 <t <tryq + HA,

The duration of the Ith time region for finding
h' is designated (4t). For the linear approxi-
mation described above, the time regions (At),
can be larger than those for h assumed constant ;
this is because a time-variable h can be better
approximated by linear segments than constant
ones.

4. ERROR ANALYSIS

An analysis of the effect of small errors in T,
helps to provide some insight into the efficacy
of this method. The analysis follows rather
closely some of the development given above.
The result is an error in h, designated 4h,, given
by

Ah, IIhT}  AT;
B EIZ(T )

where AT is an error in the measured tempera-
ture. T, is evaluated for the value of h minimizing
F, designated h. (h is not identical to the true or
correct value of h due to small errors in Y and
the calculational procedure).

The errors in temperature tend to be biased
rather than random. If they were random, then
one could use standard statistical procedures to
find the confidence region [18].

)

5. CRITERIA FOR OPTIMUM EXPERIMENTS

Rather than repeating an analysis to deter-
mine a criterion for optimizing experiments,
which is given in [10] and [13], some of the
basic conditions are stated and a correlation
between the criterion and some errors in h is
demonstrated.

The conditions are:

1. The errors in the temperature measure-
ments are small.

2. The (a) number of thermocouples, (b)
maximum temperature difference between
the highest T of the high-T specimen and
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the lowest T of the low-T specimen and (c)
number of equally-spaced temperature
measurements of the experiment are each
fixed in the possible experiments considered
below.

3. The difference between the minimum value
of the sum of squares function F and
another slightly larger F is fixed.

These conditions could be utilized to deter-
mine a classical confidence region for a given
experiment if the errors in T were random.
Because the temperature errors in our research
have tended to be biased rather than random, it
may not be correct to specify a classical con-
fidence region. However, one can still derive a
criterion which would indicate the relative
efficacy of different possible experiments [10,
13]. The criterion for an optimum experiment—
one which produces minimum errors in h for a
given error distribution in T—is to maximize

DN

where T, and T, are respectively the maxi-
mum and minimum temperatures in the speci-
mens. Note that (10a) is a normalized form of
the denominator of (9). If the measurements are
equally spaced in time, if m is large and if n = 1
(one thermocouple), then 4 can be approximated
by

'm X
o1 R0 T
4= Emax [Tmax - Tmin:l a0 (IOb)

where t,,, is the duration of the time interval
for evaluating 4. The examples to be considered
have two identical specimens and similar bound-
ary conditions at x = —L; and x = L,. Be-
cause of this symmetry about the interface (see
equation (16) of [5]), the sensitivity coefficients
in both specimens have the same absolute values
at the same distance from the interface and at
the same time. Hence it is convenient to write
4 for a single thermocouple which could be
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considered for the following examples to be in
either the high or low temperature specimen.
Exactly the same value of 4 would also be
obtained using two thermocouples both the
same distance from the interface with one on
either side of the interface.

In [5] the sensitivity coefficient T, is investi-
gated and insight is provided into the types of
experiments which would maximize 4. One
condition for transient experiments that maxi-
mize 4 is to initially have unequal but uniform
temperatures in the two specimens. Hence this
particular condition is considered below for
several boundary conditions.

This criterion specifically applies to deter-
mining a single conductance for the entire
experiment. This criterion can be helpful, how-
ever, for determining optimum experiments for
finding h(t). Suppose h' is the conductance
between times ¢; and ¢, , then it can be proved
that (see Appendix)

M
oT(x,t) \ ,.0T(1)
T Z W —an (1)
=1
for the special case of K = ho(i = 1,2,..., M)

where h is a constant h for the entire experiment.
Now the accuracy of the determination of any
k' is affected by the magnitude of its sensitivity
coefficient. Each sensitivity coefficient in (11)
has the same sign (minus in the high temperature
specimen and plus in the other specimen). If an
experiment has been chosen to maximize
|0T /ohy|,
be expected to be larger on the average than for
another similar experiment for which |6T/dh,|
had not been maximized. Hence an investiga-
tion of the optimum experiments for determina-
ting a constant conductance would simultane-
ously yield information about optimum experi-
ments for h(t). Because of this conclusion and
for brevity, only the constant-h case is examined
below.

6. POSSIBLE OPTIMUM EXPERIMENTS
6.1. Negligible internal resistance case (case 1)
Perhaps the simplest transient case to in-
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vestigate is for two identical specimens of
thickness L initially at temperatures T,,, and
Trins B = hL/k < 1. The temperature in the low
temperature specimen is given by

— T - Tmin __ 1 —2Br
T = m = 7(1 [ ) (123)
where
ot
T= iE and o= Tp. (12b)
For convenience let
A
Bt = 7 (12c)
Thet differentiating (12a) with respect to B gives
Fo— aT — — 2Bt __ A —A/2
TazBﬁ—Bre —4e (13)
and thus
_ 1 [ [ eT)
_ 1 2 -4
_167[2 (A% + 24 + 2)e™1]. (14)

(The definition of 4 used in equation (14) is the
same as used in equation (10) which is used in
all the following cases). These results are plotted
in Fig. 2.

o-5[
8 max =0-02427
oal AT 8 r =0-846 004

~N

031
AND

o™

02

41001

o]

8r

FiG. 2. Curves of T, T; and 4 for Case L (Finite plate with
B = hL/k ~ 0 and constant h).

The dimensionless temperature starts at zero
and reaches its maximum approximately at
Bt = 3 while the maximum of T, occurs at
exactly Bt = 0-5. Hence, if only one instanta-
neous temperature reading is to be taken, it
should be at this latter time. Incidentally, if one
desired to perform such an experiment and
desired to find a preliminary value of A, it
could be readily done by setting

ht
Atr=——=05 (15)
peyL
when T = 0-316.
If a large number of temperature measure-

ments at uniform time intervals were to be made,
then one would maximize 4 in order to minimize
the effect of temperature errors upon the cal-
culation of h. This would apply for this case
when using one or more thermocouples. The
maximum occurs at B ¢ ~ 0-846. Before analy-
zing the data for an experiment one does not
know h and hence cannot compute precisely
the optimum duration for using the temperature
data. However, the 4 maximum is not sharp;
if the maximum time is chosen to be between
the times associated with say, T = 0-35 and
0-45, little loss of accuracy will result.

6.2 Semi-infinite case (Cases 11 and III)

The other extreme value of B compared to
the previous case is B = hL/k equal to infinity
which occurs when L — co. The temperature
distribution in the low-temperature specimen is

- T - Tmin 1 T;%
T Tmax— Tmin B 5 {erfc< 2 )

-3
— [exp (2B, + 4B21,)] erfc (”‘T + 2er§>}

where
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and which for the interface (x = 0) reduces to

T(O’ t) - Tmin
Tmax - Tmin

= 31 - [exp @BZ)] erfo Bt} (19)
Note that
2
B, =" (19)

given in equation (18) is independent of x.
For any interior point, however, T is a function
of both B, and ..

Depicted in Fig. 3are T, T;_and 4 for x = 0
(Case II). The optimum duration of an experi-
ment as indicated by 4 is

h?at
2 _ opt )
Blt, = —3 & 040, (20)
0-016
7-
OR 4 0-012
5. i
0-008
8y
ol - 0004
0 i 1 ' 1
o ] 2 3 4 5
825 = Hat

F1G. 3. Curves of T, T and 4 for interface for semi-infinite
body (Case II).

Typical curves are depicted in Fig. 4 for
the interior location indicated by B, = 10
(Case III). Note that the maximum value of 4
for x = 0 shown in Fig. 3 is about 0-0172 while
for B, = 10 from Fig. 4, 4,,, is the smaller
value of 0-003. Figure 5 shows how 4,,,, varies
with B,. The times 7, , = at,/x* associated
with these 4,,,,’s are also given.

To further demonstrate the efficacy of the
A4 Criterion, the effect of two distributions of
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05 o T -
8=l
oal
7
f
OR o3}
7; SAME 7 AS SHOWN
* IN INSET OF FIG. 3.
o2t THERMOCOUPLE AT x=f
a
o 4 0-004
a
9 0002
o A S N
o + 2 3 4 5 6 7 8 9 I0

r

FiG. 4. Curves of T, Tp_ and 4 for B = 1-0 for semi-infinite
body (Case III).

o021 410

2
8y Tx.m

SEE INSET
OF FIG. 3.

L 0
o] | 2
8= 1}!

o

FiG. 5. Curves of 4,,, and B21, ,, for semi-infinite body.

temperature measurement errors upon the
accuracy of h is given. For simplicity in analysis
one thermocouple is used. The first error
distribution (designated “a” in Fig. 6) is for a
constant error in temperature equal to

ATi = G(Tmax - Tmin)/2 (21)

where ¢ is a small number such as 0-01. The
other curve in Fig. 10 (Curve b) is for an error
whichisa given fraction of the temperature rise or

ATi = 6T(’Tmax - Tmin)- (22)
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As anticipated, the per cent errors in h increase
with increasing B, which is associated with
decreasing 4. The minimum error shown is for
Curve a with B, = 0; if ¢ = 001, then the error
in h would be about 2 per cent. Since some other
errors indicated by Fig. 6 are much larger, it
behoves one to be careful in the design of the
experiments.

6.3 Finite cases (Cases IV, V and VI)

Three finite cases with the specimens of equal
length and the same thermal properties are
described in Table 1. Case IV, which has a
uniform initial temperature distribution, is the
easiest experiment to perform; unfortunately
in most cases it is not as effective for the accurate
determination of h as the other two. Case V and
VI have initial temperature distributions which
are uniform in each specimen at T, .. and T,

Depicted in Fig. 7 are the 4 versus time

Ak
he

a- CONSTANT 47

b - CONSTANT FRACTIONAL

ERROR IN 7T
0 1 'y ] .
0 0-5 -0 +5 20

B

x

FiG. 6. Errors in h for single thermocouple in semi-infinite
body.
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0020 |
CASE V
S
0oIs /
/
i CASE IV
ooiof CASE Vi

FI1G. 7. 4 vs. © for x = 0 for finite body Cases 1V, V and VI
with B = 0-5.

curves for these three cases for the special con-
ditions of B(= hL/k) = 0-5 and a thermocouple
at x = 0— or 0+ (the interface). Evidently, for
Case IV with B =05 and x = 0, the steady-
state experiment (t — oo) is superior to a
transient experiment of short duration (assuming
h is invariant with time). For other values of B
this is not true as discussed below.

For Cases 1V the maximum values of 4 vs. x
(position of a thermocouple) are shown in Fig. 8
for B = 0-5,1-0and 2-0. These 4,,,,-values, which
are identical to those obtained in steady state,
are given by

xPP B?
B Z} 2B + 1)*
This expression is maximized when B = 0-5 for
any given x/L. It can be proved that these

A-values also apply if T(—L,t) were a
function of time such that 7, < T(—L,t) <

(23)

Table 1. Initial and boundary conditions for cases IV, V and VI

Initial temperature

Boundary conditions

Case distribution
No.
—-L<x<0 0<x<L x=~—L x=1L
v T = Tmin T = Tmin T = Tmax T = Tmin
V T= max T = Tm'm T = Tmax T = Tmin
VI T = Toax T = Tin oT/ox =0 oT/ox =0
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t=®
10
P T CASE 1V
05 (FIXED END TEMPS)
g =05
% o, L
ool
025 AND 1O
B max
025 AND 20
0005
)

G e 4 o4 o6 o8 8]
X/L

Fic. 8. 4,,,, for finite body, Case IV.

Tax and that it finally reached a constant
value equal to T,,,.

In Fig. 9 some results for Case V are shown for
A,.... For a short dimensionless time the
temperature response at the interface is identical
to that for the two semi-infinite bodies discussed
above; hence, for B> 1 the maximum 4’s
at the fnterface are equal to the 4,,,, of Fig. 3.
For B <05 the 4,, values are given by
equation (23). Because one cannot place a
thermocouple at x = 0 without disturbing the
temperature at the most critical location but
rather some distance from x = 0, the B =05
value is again probably an excellent choice.
For cases IV and V it is clear that one should
place the thermocouples as near the interface
as possible without disturbing the interface
conditions.

0015

X/t
FI6. 9. 4,,,, for finite body, Case V.

The most interesting of the three cases is
Case VI (see Fig. 10). As B approaches zero,
the temperature distribution (except in the
immediate vicinity of the interface) becomes
uniform in x at any given time; then, 4,
becomes constant with x as B —» 0 which is the
case discussed in Section 6.1. For the cases of
B < 05 the optimum experimental time is
about Bt = (-8 as indicated by Figs. 2 and 7.
Values of B > 1 give values of 4, at x =0
which are identical to those for a semi-infinite
body and are also shown by Fig. 9 for Case V.

For these three finite cases the optimum
value of B for bodies with T=0 at x= L
is about 0-5 as indicated by Figs. 8 and 9 while
the optimum B for Case VI goes to zero. For
this latter case it is not nearly as important to
position the thermocouple near the interface
as for the other two cases.

ooz2sf

0-020

0015

4 max

0-010

0005

0 1 1 1 i 4
0 o2 o4 06 08 10
Xr/L
Fi6. 10. 4,,,, for finite body, Case VI,

7. RESULTS

Since a number of cases are considered above,
a summary of the results is given in Table 2.
For each case the specimens on either side of
the interface are identical and have the same
type boundary conditions at corresponding sur-
faces. The 4’s are given for only a single thermo-
couple. For Case III the thermocouple is
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Table 2. Various optimum experiments with identical specimens on either side of

interface
Case Geomet _ Optimum
no. Ty Arax time
I Finite bodies with ¢ = 0 at 002427  Br, = 0:846
x=+ Land B—0,ie. k- o or
L0
II Semi-infinite bodies for thermo- 00172 Bit, ,, = 040
couple at x = 0+ (or 0—)
mn Semi-infinite bodies for interior 0003 T = 17
thermocouple with B, = 1
v Finite body (see Table 1) 00156 T = O
Thermocouple x = 0+ (or 0—)
and B = 05
v Finite body (see Table 1) 00172 B, = 040
Thermocouple at x = 0+ (or 0—)
B =10
Vi Finite body (see Table 1)
Thermocouple at x = 0+ {or 0—)
Via B-o0ick-worl-0 002427 Br,, = 0-846
(same as Case I}
Vb B=05 0-0183 Ty = 125

located inside the body while for Cases 1I,
IV, V and VIb the thermocouple is at x = 0~
or 0+.

As discussed above the optimum experiment
is one in which 4 is maximized. On this basis the
optimum experiment is for two finite specimens
with B tending to zero (Cases I or VIa). Figure 11
depicts the fractional errors in h due to the two
error distributions discussed in Section 6.2
and used for the semi-infinite example (Fig. 6).
Curve a in Fig. 11 (which is for a constant error
in the temperature) has a minimum which
coincides approximately with the dimensionless
time at which 4 is maximized. To some extent
this is a coincidence because the minimum error
could occur at smaller or greater values of B
depending upon the distribution with time of
the errors in the measured temperatures. How-
ever, the error distribution associated with
Curve a is an important one because it is one
of the most severe types of biased errors.

Also shown in Fig. 11 is Curve b which is for
an error distribution which is proportional

to the temperature rise. The minimum error
occurs at Bt = 0 which corresponds to a tem-
perature rise (Fig. 2) of zero; this result is thus
not too helpful because the errors are unlikely

5
4k
a
3F
Ahg
he b

2+

i

o) L L
(4] 10 B r 20

F1G. 11. Errors in h for single thermocouple in finite body,
Case VI with B ~ 0.



THERMAL CONTACT CONDUCTANCE 631

to be proportional to the temperature rise as
the temperature rise approaches zero.

Notice that the h-errors in Fig. 11 are less than
those in Fig. 6 for B, = 0. This is consistent with
the 4 criterion because the 4, values are
respectively 0024 and 0-017. For B, > 0 in
Fig. 6 the h-errors increase consistently with the
criterion. These results of mathematical experi-
mentation with T-errors give further validity
to the 4,,,, criterion for an optimum experiment.

8. SUMMARY AND CONCLUSIONS

A method utilizing nonlinear estimation 1s
given to calculate the contact conductance h
as a constant or as a function of time.

A general error analysis is given to permit the
investigation of biased errors upon the calcu-
lated h; this error analysis is employed for
several examples.

To aid in the determination of optimum
experiments for finding a time-invariant h,
the criterion 4 is given and values for it have been
determined for a number of cases.

A number of possible experiments are ex-
amined. If the two specimens are identical and
a constant h is to be found, the optimum
experiment is one in which the specimens are
initially at different temperatures and then
suddenly brought into thermal contact. The
specimens are insulated at all surfaces except
the interface. The dimensionless number
B = hL/k should be as small as conditions
permit. If B < 0-5, the locations of the thermo-
couples are not critical; if B > 0-5, then some
thermocouples are located as near the interface
as possible but yet still outside the disturbance
layer.
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APPENDIX
Derivation of Sensitivity Relation Equation (11)
Consider the geometry shown by Fig 1;
the mathematical description of the problem
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is given in part by equations (1-3). The initial
temperature distribution is

T(x,0) = T(x) (A-1)
and the boundary conditions at x = — L and
L are
T,

k2 = A,() T(—=L,t) + By(t) (A-2)
ax x=—1L
oT.

—k, =2 = A,(t) T(L,t) + By(t) (A-3)
6x x=L

where 4,, A,, B, and B, are known functions of
time; any or all of these coefficients can be
zero. The thermal properties are to be considered
constants.

For conciseness only body 1 will be considered
below although similar relations can be given
for body 2.

Consider first the case of time-independent
h = hy and let

0T,

oT.
@10 = ho 5};;

br0=hog (A9
Take the partial derivative of equations (1),
(3) (A-1) and (A-2) with respect to h, and
multiply by k, to obtain

0? 0
ks 6‘)’2;" =p1c,,,1% (A-5)
0
kS8 = 10,0~ (0,01
+ h[T0,0 — T0,0]  (A-6)
¢10(x, 0) = 0 (A'7)
i %0l _ A 0ée(~L (A)
ax x=—-L

Now replace h(t) = h, by a series of functions
B, i=1,2,...,M where

We)=hi=hy for t;<t<tiy (A-9)

V. BECK

Define

) 0T,
i hz__l_
& ohi’
and take the partial derivative of equations (1),
(3), (A-1) and (A-3) with respect to h* and then
multiply by h* = h, to obtain

o,

¢, =h P (A-10)

62 i 2 i
IW@:plcp,laitl (A-11)
o} . _

—ki ;;1 o ho[91(0, 1) — $5(0,1)]
+ hd() [T10,1) — T,0,0]  (A-12)
d’il(xy 0)=0 (A-13)
_kl% x= oL A(t) ¢i(— L, 1) (A-14)
where y=1ift; <t <t;y; (A-15)

= 0 otherwise.

If now equation (A-11) is written for i = 1,

2,..., M and the equations are added together,
there results
0*G oG
klb@;c—f = P1Cp,1'67 (A-16)
where
M
G = Z o} (A-17)

Repeat the summation procedure for equa-
tions (A-12)(A-14). Comparing these equations
with (A-5)+(A-8) shows that

M
Pio(x,t) = G = .;1 4”1 (A-18)

A similar result can be demonstrated for body 2.
These latter two results yield equation (11).
Note that equation (11) is valid for a variety of
initial and boundary conditions; the basic
restrictions are that the thermal properties are
temperature-independent (i.c. the problem must
be linear).



THERMAL CONTACT CONDUCTANCE

Résumé—Certains travaux récents indiquent que la conductance du contact thermique peut varier d’une
fagon importante avec le temps. Dans les études antérieures des cas transitoires, les analyses étaient
restreintes aux cas utilisant une spécimen mince ou des thermocouples placés 4 P'interface. Comme la
conductance du contact est un effet de volume, ces restrictions sont fréquemment trop sévéres. Pour cette
raison, on présente une méthode pour I’analyse des résultats de température obtenus a partir des spécimens
thermiquement épais avec les thermocouples placés & I'interface.

Ily a un certain nombre d’expériences transitoires possibles qui pourraient étre employées, mais elles
ne sont pas toutes également aussi efficaces pour déterminer la conductance. On donne un critére pour
permettre les comparaisons entre les expériences; un certain nombre d’expériences possibles est comparé
en employant ce critére. A partir de cette comparaison quelques expériences optimales sont indiquées.
Ces expériences optimales permettent de déterminer la conductance de contact plus précisément qu’en

employant d’autres expériences semblables avec la méme précision des mesures de température.

Zusammenfassung—Kirzlich erschienene Arbeiten deuten an, dass sich der thermische Ubergangswider-
stand stark mit der Zeit andern kann. In fritheren Untersuchungen von instationdren Fillen waren die
Analysen auf diinne Proben beschriinkt oder auf Fille in welchen die Thermoelemente in der Trennfuge
angeordnet waren. Da der Ubergangswiderstand ein Volumeneffekt ist, sind diese Einschrinkungen
hiufig zu stark. Daher wird eine Methode angegeben, zur Analysierung der Temperaturen die an dicken
Proben mit Thermoelementen die nicht in der Trennfuge lagen, gemessen wurden.

Es konnen eine Reihe von moglichen instationdren Versuchen angewandt werden, jedoch sind sie zur
Bestimmung des Widerstandes nicht gleich wirksam. Zum Vergleich der einzelnen Versuche wird ein
Kriterium angegeben und eine Anzahl von Versuchen wird damit beurteilt. Es ergeben sich einige optimale
Versuche. Sie erlauben eine genauere Bestimmung des Ubergangswiderstandes als andere, dhnliche

Versuche, deren Temperaturmessungen gleich genau durchgefiihrt wurden.

Anpvoranua—B HeKOTOpHX NociHefHMX paloTax YKA3BIBAETCA, YTO KOHTAKTHAA TemJio-
TIPOBOAMMOCTE MOeT 3HAYUTENIbHO N3MEHATHCHA CO BpeMeHeM . B nNpeabiAyIMX HCCaeA0BaHUAX
HECTAUMOHAPHBIX MPOLECCOB aHAIUAB GBUIM OTPAHMYEHHl CIYYasMH, B KOTOPHIX MCHOJIb30-
BajicA WM TOHKMI o6pasel MJIM TEPMONAPHI, PACMIOI0MEHHbE HA rpannLe pasaena. Tak kaw
KOHTAKTHAA TNPOBOJUMOCTh TpeAcTaBjider coOolt oObeMHBIN 3QdeKT, TH OrpaHMYEHMHA
ABIAIOTCA CIUMIKOM cTporumu. ITo aToit mpuuuHe TpeJCcTaBIIeH METO A aHAIM3A TeMIepa-
TYPHBIX [@HHBIX, NOJYYEHHEIX HA TEPMUYECKM TOJNCTHX 00pasuax, KOTa TepMOHaphl He
00s3aTeIbHO PACNOJIOTaINCh HA TPaHUIle pasfela.

MoHO MpOBeCTH PAJ, HKCNEPHMEHTOB IO HECTALMOHAPHON TEMIONPOBOAHOCTH, KOTOPbHIE
Morsan Ge OBITE MCIOJNB30BAHM, HO OHM He Bcerga GyAyT ONMHAKOBO d(QQeHTHBHHMHU npu
onpejiesienn npoBoguMocTH. [lpencraBien KpuUTepuit, NMOBBOJAIIINI CPABHATE JKCIEPU-
MEHTHI ; ¢ TOMOIHBIO 3TOT0 KPUTEPHUSA MPOBEIeH0 CPABHEHUE HECKOIbKIX BOBMOMHBIX 9KCIIePU-
MEHTOB ; IIPUBOJUTCA CPABHEHHE PAAA DKCIEPUMEHTOB HA OCHOBE MCIIONB3OBAHMA 3TOrO
Kpurepus. B pesynbrate 0TOGpanbl HEKOTOPHIE OITMMAJLHBIE DKCIEPUMEHTHI, O3BOJIAIOIME
OIpefeUTs KOHTAKTHYIO TIPOBOTMMOCTH 00Jiee TINATENBHO, YeM C NMOMOLIBI0 JPYTUX AHAJIO-
THYHBIX DKCHEPHUMEHTOB, B KOTOPBIX M3MEpeHUA TeMMepaTypsl NPOUBBONUIUCL C TAKOH e

TOYHOCTBIO
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